激活函数multi-sigmoid和softmax有什么区别?
1个回答
multi-sigmoid activation function 用于multi-label classification problem,label不是只有一个答案,也就说label y可能有多个1。比如一个x-ray胸透结果,可能诊断出有肺部感染和脓肿,但是没有胸膜增厚,没有心脏肿大或者疝气那么y = (y1=1, y2=1, y3=0, y4 = 0, y5 = 0),使用multi-sigmoid激活函数产生的概率是 prob = (0.9, 0.8, 0.2, 0.1, 0.15). 注意,这里所有的概率和并不是1,每个维度是相对彼此独立的。
softmax activation function 用于multi-class classification problem,label只能有一个答案,label y只有一个1。比如我们要判断一个图片到底是0-9里面的哪个数字,y class有10个,但是只可能有一个数字。假设这个数字是3, y = (y1 = 0, y2 = 0, y3 = 1, y4 = 0, ..., y9 = 0), 使用softmax激活函数产生概率是prob = (0.01, 0.01, 0.9, 0.01, 0.01, 0.01, 0.02, 0.01, 0.01, 0.01). 注意,这里的概率和必须相加为1,这是限制条件。
总结来说,如果你的output class是互斥的,就用softmax, 反之用sigmoid。