Fisher Information的统计意义是什么?

  统计/机器学习 概率论 描述性统计    浏览次数:4427        分享
0

Fisher Information是未知参数的信息量,这个怎么理解,它的统计意义是什么?

 

ccc225   2018-06-12 00:54



   1个回答 
4

Suppose likelihood is $L(X; \theta)$, log likelihood is $l(X; \theta)$, then


(1) Fisher Information is second moment (and variance) of the gradient of log likelihood

Fisher information $I(\theta)= \mathbb{E}[(\frac{\mathrm{d}l}{\mathrm{d}\theta})^2| \theta]  = Var(\frac{\mathrm{d}l}{\mathrm{d}\tilde{\theta}}| \theta)$

since $\mathbb{E}(\frac{\mathrm{d}l}{\mathrm{d}\theta}| \theta)=0$ (Proof)


(2) Fisher information is related to asymptotic distribution of MLE $\hat{\theta}_{MLE}$

By CLT and slutsky theorem, we can conclude that $$\sqrt{n}(\hat{\theta}_{MLE}-\theta) \overset{p}{\to} N(0, I(\theta)^{-1})$$

Applications: Cramer Rao Bound

Under regularity conditions, the variance of any unbiased estimator ${\hat{\theta }}$ of  $\theta$  is then bounded by inverse of Fisher information $I(\theta)$ with 

$$Var(\hat{\theta}) \geq \frac{1}{I(\theta)}$$

Note that this CR lower bound is just a "theoretical" lower bound, which means that it may not be applicable (i.e. fail to satisfy regularity conditions) or attainable (can't reach lower bound)

e.g.

CR applicable but not attainable for estimating $\sigma^2$ when $X \overset{i.i.d} \sim N(\mu, \sigma^2)$ since $var(s^2)= \frac{2\sigma^4}{n-1} > \frac{2\sigma^4}{n} = $CR bound.


Reference: 

Sinho Chewi's Theoretical Statistics Note

Fisher Information

SofaSofa数据科学社区DS面试题库 DS面经

aragakiyuii   2018-11-10 07:09



  相关讨论

多个独立同分布的均匀随机变量的最小值的期望是多少?

一个骰子平均扔多少回才能把六个数字都扔出来至少一次

超几何概率问题

用一个骰子生成1到7的随机数?

概率统计里的iid是什么意思?

证明马尔可夫不等式

柯西分布没有数学期望

什么是Jensen不等式?有什么直观的解释?

今天明天都下雨的概率

什么函数族满足关于最值函数封闭?

  随便看看

向量梯度下降优化的最佳步长?

pandas读取csv中指定的某些列

为什么机器学习中的优化问题很少用到牛顿法?

R里线性回归结果中最后的F-statistic什么意思?有什么用?

PCA降维之前为什么要先标准化?