这两个都属于集成学习(ensemble learning), 但是请问具体有何不同呢?
1个回答
随机森林属于平行集成(parallel ensemble), 也就是同时训练若干个决策树模型,希望它们尽量地相互独立,然后对所有的决策树的预测结果进行平均作为最终的预测结果。
Gradient Tree Boosting属于连续集成(consecutive ensemble),也就是有顺序地训练若干的决策树模型。其大致过程如下。首先训练出一个决策树模型,接着再训练一个决策树,而这个新的决策树的目标变量(也就是想要预测的值)是前面所有决策树的预测结果和真实值之间的误差(residual)。也就是Gradient Tree Boosting是一个连续累加的过程。
SofaSofa数据科学社区DS面试题库 DS面经