有时候对连续特征处理时,例如年龄,需要离散化,但是不知道怎样离散化比较合适,听说gbdt可以离散化,请问是怎样实现的?
1个回答
我抛砖引玉一下。
对连续特征离散化是决策树本身就可以做到的,而不是非要gradient boost。
决策树是这样做的。
- 首先对这个连续变量排序。比如说年龄,把所有样本中年龄的数值从小到大排序。
- 在数据没有重复的假设下,如果有n个样本,那么排序后的数据之间应该有n-1个间隔。
- 决策树会对这n-1个间隔进行逐一尝试(分叉),每个不同的分叉,会带来不同的gini指数,我们最终选gini指数最小的那个分叉作为最优分叉。
理论上是这样进行的,但是实际情况是为了一些计算优化,可能会进行一些随机搜索,而不一定是遍历。
上面这个过程就把那个连续变量进行了一分为二(第一次离散化),比如说年龄被分成了0到20岁,20到100岁。
接下来,当决策树继续生长时,之前一分为二的连续特征可能会再次被选中。比如说20到100岁这个分叉被选中,我们再次重复上面那三个步骤。这次得到的结果可能是20到35,35到100岁。
以此反复,这样一个连续变量就不停地被离散化,直到模型达到停止的条件。